(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Types:
minus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
0' :: 0':s:zero:true:false
s :: 0':s:zero:true:false → 0':s:zero:true:false
double :: 0':s:zero:true:false → 0':s:zero:true:false
plus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
if :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
gt :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
not :: 0':s:zero:true:false → 0':s:zero:true:false
id :: 0':s:zero:true:false → 0':s:zero:true:false
zero :: 0':s:zero:true:false
true :: 0':s:zero:true:false
false :: 0':s:zero:true:false
hole_0':s:zero:true:false1_0 :: 0':s:zero:true:false
gen_0':s:zero:true:false2_0 :: Nat → 0':s:zero:true:false

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
minus, double, plus, gt

They will be analysed ascendingly in the following order:
gt < plus

(6) Obligation:

Innermost TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Types:
minus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
0' :: 0':s:zero:true:false
s :: 0':s:zero:true:false → 0':s:zero:true:false
double :: 0':s:zero:true:false → 0':s:zero:true:false
plus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
if :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
gt :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
not :: 0':s:zero:true:false → 0':s:zero:true:false
id :: 0':s:zero:true:false → 0':s:zero:true:false
zero :: 0':s:zero:true:false
true :: 0':s:zero:true:false
false :: 0':s:zero:true:false
hole_0':s:zero:true:false1_0 :: 0':s:zero:true:false
gen_0':s:zero:true:false2_0 :: Nat → 0':s:zero:true:false

Generator Equations:
gen_0':s:zero:true:false2_0(0) ⇔ 0'
gen_0':s:zero:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:zero:true:false2_0(x))

The following defined symbols remain to be analysed:
minus, double, plus, gt

They will be analysed ascendingly in the following order:
gt < plus

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
minus(gen_0':s:zero:true:false2_0(n4_0), gen_0':s:zero:true:false2_0(n4_0)) → gen_0':s:zero:true:false2_0(0), rt ∈ Ω(1 + n40)

Induction Base:
minus(gen_0':s:zero:true:false2_0(0), gen_0':s:zero:true:false2_0(0)) →RΩ(1)
gen_0':s:zero:true:false2_0(0)

Induction Step:
minus(gen_0':s:zero:true:false2_0(+(n4_0, 1)), gen_0':s:zero:true:false2_0(+(n4_0, 1))) →RΩ(1)
minus(gen_0':s:zero:true:false2_0(n4_0), gen_0':s:zero:true:false2_0(n4_0)) →IH
gen_0':s:zero:true:false2_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Types:
minus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
0' :: 0':s:zero:true:false
s :: 0':s:zero:true:false → 0':s:zero:true:false
double :: 0':s:zero:true:false → 0':s:zero:true:false
plus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
if :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
gt :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
not :: 0':s:zero:true:false → 0':s:zero:true:false
id :: 0':s:zero:true:false → 0':s:zero:true:false
zero :: 0':s:zero:true:false
true :: 0':s:zero:true:false
false :: 0':s:zero:true:false
hole_0':s:zero:true:false1_0 :: 0':s:zero:true:false
gen_0':s:zero:true:false2_0 :: Nat → 0':s:zero:true:false

Lemmas:
minus(gen_0':s:zero:true:false2_0(n4_0), gen_0':s:zero:true:false2_0(n4_0)) → gen_0':s:zero:true:false2_0(0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s:zero:true:false2_0(0) ⇔ 0'
gen_0':s:zero:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:zero:true:false2_0(x))

The following defined symbols remain to be analysed:
double, plus, gt

They will be analysed ascendingly in the following order:
gt < plus

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
double(gen_0':s:zero:true:false2_0(n420_0)) → gen_0':s:zero:true:false2_0(*(2, n420_0)), rt ∈ Ω(1 + n4200)

Induction Base:
double(gen_0':s:zero:true:false2_0(0)) →RΩ(1)
0'

Induction Step:
double(gen_0':s:zero:true:false2_0(+(n420_0, 1))) →RΩ(1)
s(s(double(gen_0':s:zero:true:false2_0(n420_0)))) →IH
s(s(gen_0':s:zero:true:false2_0(*(2, c421_0))))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Types:
minus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
0' :: 0':s:zero:true:false
s :: 0':s:zero:true:false → 0':s:zero:true:false
double :: 0':s:zero:true:false → 0':s:zero:true:false
plus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
if :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
gt :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
not :: 0':s:zero:true:false → 0':s:zero:true:false
id :: 0':s:zero:true:false → 0':s:zero:true:false
zero :: 0':s:zero:true:false
true :: 0':s:zero:true:false
false :: 0':s:zero:true:false
hole_0':s:zero:true:false1_0 :: 0':s:zero:true:false
gen_0':s:zero:true:false2_0 :: Nat → 0':s:zero:true:false

Lemmas:
minus(gen_0':s:zero:true:false2_0(n4_0), gen_0':s:zero:true:false2_0(n4_0)) → gen_0':s:zero:true:false2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s:zero:true:false2_0(n420_0)) → gen_0':s:zero:true:false2_0(*(2, n420_0)), rt ∈ Ω(1 + n4200)

Generator Equations:
gen_0':s:zero:true:false2_0(0) ⇔ 0'
gen_0':s:zero:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:zero:true:false2_0(x))

The following defined symbols remain to be analysed:
gt, plus

They will be analysed ascendingly in the following order:
gt < plus

(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol gt.

(14) Obligation:

Innermost TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Types:
minus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
0' :: 0':s:zero:true:false
s :: 0':s:zero:true:false → 0':s:zero:true:false
double :: 0':s:zero:true:false → 0':s:zero:true:false
plus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
if :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
gt :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
not :: 0':s:zero:true:false → 0':s:zero:true:false
id :: 0':s:zero:true:false → 0':s:zero:true:false
zero :: 0':s:zero:true:false
true :: 0':s:zero:true:false
false :: 0':s:zero:true:false
hole_0':s:zero:true:false1_0 :: 0':s:zero:true:false
gen_0':s:zero:true:false2_0 :: Nat → 0':s:zero:true:false

Lemmas:
minus(gen_0':s:zero:true:false2_0(n4_0), gen_0':s:zero:true:false2_0(n4_0)) → gen_0':s:zero:true:false2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s:zero:true:false2_0(n420_0)) → gen_0':s:zero:true:false2_0(*(2, n420_0)), rt ∈ Ω(1 + n4200)

Generator Equations:
gen_0':s:zero:true:false2_0(0) ⇔ 0'
gen_0':s:zero:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:zero:true:false2_0(x))

The following defined symbols remain to be analysed:
plus

(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol plus.

(16) Obligation:

Innermost TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Types:
minus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
0' :: 0':s:zero:true:false
s :: 0':s:zero:true:false → 0':s:zero:true:false
double :: 0':s:zero:true:false → 0':s:zero:true:false
plus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
if :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
gt :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
not :: 0':s:zero:true:false → 0':s:zero:true:false
id :: 0':s:zero:true:false → 0':s:zero:true:false
zero :: 0':s:zero:true:false
true :: 0':s:zero:true:false
false :: 0':s:zero:true:false
hole_0':s:zero:true:false1_0 :: 0':s:zero:true:false
gen_0':s:zero:true:false2_0 :: Nat → 0':s:zero:true:false

Lemmas:
minus(gen_0':s:zero:true:false2_0(n4_0), gen_0':s:zero:true:false2_0(n4_0)) → gen_0':s:zero:true:false2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s:zero:true:false2_0(n420_0)) → gen_0':s:zero:true:false2_0(*(2, n420_0)), rt ∈ Ω(1 + n4200)

Generator Equations:
gen_0':s:zero:true:false2_0(0) ⇔ 0'
gen_0':s:zero:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:zero:true:false2_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s:zero:true:false2_0(n4_0), gen_0':s:zero:true:false2_0(n4_0)) → gen_0':s:zero:true:false2_0(0), rt ∈ Ω(1 + n40)

(18) BOUNDS(n^1, INF)

(19) Obligation:

Innermost TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Types:
minus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
0' :: 0':s:zero:true:false
s :: 0':s:zero:true:false → 0':s:zero:true:false
double :: 0':s:zero:true:false → 0':s:zero:true:false
plus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
if :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
gt :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
not :: 0':s:zero:true:false → 0':s:zero:true:false
id :: 0':s:zero:true:false → 0':s:zero:true:false
zero :: 0':s:zero:true:false
true :: 0':s:zero:true:false
false :: 0':s:zero:true:false
hole_0':s:zero:true:false1_0 :: 0':s:zero:true:false
gen_0':s:zero:true:false2_0 :: Nat → 0':s:zero:true:false

Lemmas:
minus(gen_0':s:zero:true:false2_0(n4_0), gen_0':s:zero:true:false2_0(n4_0)) → gen_0':s:zero:true:false2_0(0), rt ∈ Ω(1 + n40)
double(gen_0':s:zero:true:false2_0(n420_0)) → gen_0':s:zero:true:false2_0(*(2, n420_0)), rt ∈ Ω(1 + n4200)

Generator Equations:
gen_0':s:zero:true:false2_0(0) ⇔ 0'
gen_0':s:zero:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:zero:true:false2_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s:zero:true:false2_0(n4_0), gen_0':s:zero:true:false2_0(n4_0)) → gen_0':s:zero:true:false2_0(0), rt ∈ Ω(1 + n40)

(21) BOUNDS(n^1, INF)

(22) Obligation:

Innermost TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)

Types:
minus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
0' :: 0':s:zero:true:false
s :: 0':s:zero:true:false → 0':s:zero:true:false
double :: 0':s:zero:true:false → 0':s:zero:true:false
plus :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
if :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
gt :: 0':s:zero:true:false → 0':s:zero:true:false → 0':s:zero:true:false
not :: 0':s:zero:true:false → 0':s:zero:true:false
id :: 0':s:zero:true:false → 0':s:zero:true:false
zero :: 0':s:zero:true:false
true :: 0':s:zero:true:false
false :: 0':s:zero:true:false
hole_0':s:zero:true:false1_0 :: 0':s:zero:true:false
gen_0':s:zero:true:false2_0 :: Nat → 0':s:zero:true:false

Lemmas:
minus(gen_0':s:zero:true:false2_0(n4_0), gen_0':s:zero:true:false2_0(n4_0)) → gen_0':s:zero:true:false2_0(0), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s:zero:true:false2_0(0) ⇔ 0'
gen_0':s:zero:true:false2_0(+(x, 1)) ⇔ s(gen_0':s:zero:true:false2_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s:zero:true:false2_0(n4_0), gen_0':s:zero:true:false2_0(n4_0)) → gen_0':s:zero:true:false2_0(0), rt ∈ Ω(1 + n40)

(24) BOUNDS(n^1, INF)